sexta-feira, 29 de julho de 2016

New antibiotic found in human nose

By Kai Kupferschmidt

Nasal cavities
MANCHESTER, U.K.—You may have heard about drugs disappearing into people's noses. But at a meeting here this week and in a new paper, scientists presented the opposite: A new antibiotic that has, quite literally, emerged from the human nose. The compound is produced by one species of nose-dwelling bacterium to kill another microbe, which kills thousands of people every year.
The study is “yet another demonstration that we should look to nature for solutions to the problems nature throws at us,” says Andrew Read, an evolutionary biologist at Pennsylvania State University, University Park, who was not involved with the work.
Any new antibiotic is welcome because the world is running out of these life-saving drugs. But the researchers behind the new finding believe that studying the microbial warfare going on inside our bodies may lead to not just one, but a whole slew of novel drugs. “We’ve found a new concept of finding antibiotics,” Andreas Peschel, a bacteriologist at the University of Tübingen in Germany, said on Tuesday at the EuroScience Open Forum, a biennial science and policy meeting. “We have preliminiary evidence at least in the nose that there is a rich source of many others, and I’m sure that we will find new drugs there.”
Peschel and bacteriologist Bernhard Krismer, also at the University of Tübingen, started out investigating why roughly every third person carries a bacterium called Staphylococcus aureusin their nose. Most of the time, Saureus is harmless, but occasionally, it causes severe, even life-threatening, disease—for instance when it gets into an open wound and causes sepsis. S.aureus is a notorious hospital dweller, and its drug-resistant form, known as MRSA (for methicillin-resistant Staphylococcus aureus) is a major public health problem, killing more than 10,000 people a year in the United States alone.
But why do some people carry Saureus in their nose, whereas others don't? Analyzing human nasal secretions—also known as snot—Peschel and Krismer found that the nose is not a very hospitable niche for microbes. “If I were a bacterium I would not go into the nose,” Peschel says. “There is nothing there, simply a salty liquid and a tiny amount of nutrients.”
Those harsh conditions might lead to fierce competition for resources, the researchers reasoned. So they tested what effect a collection of other Staphylococcus species had on S.aureus. One bacterium, Slugdunensis, turned out to be very good at preventing Saureus from growing. The researchers found that the bacterium produced an antibiotic compound and succeeded in synthesizing it in the laboratory. The chemical, which they named lugdunin, inhibited Saureus from growing in the petri dish, and when applied to the skin of mice infected with Saureusit reduced or even eradicated the infection, the team reports today in Nature. It was also effective against antibiotic-resistant strains like MRSA.
Just how lugdunin works is unclear. The researchers say that Saureus did not evolve resistance to it, however, even when exposed to low levels over a period of 30 days.
The scientists then analyzed the microbial populations in the noses of 187 hospitalized patients. Sixty of them carried Saureus and 17 Slugdunensis; only one patient carried both. That suggests Slugdunensis is a powerful enemy of Saureus, the authors say.
“This is extremely exciting as it provides evidence that a microbial war is ongoing in our body,” says Jack Gilbert, a microbial ecologist at the University of Chicago in Illinois. On a practical level, he says, the research shows “that certain organisms can be leveraged to create novel drugs that could add to our arsenal of weapons against drug-resistant [microbes].”
But using such new weapons may have unintended consequences, warns Peer Bork, a computational biologist at the European Molecular Biology Laboratory in Heidelberg, Germany. “Yes, it’s a cool finding,” he says. But the microbiome is a delicate balance that has evolved over millions of years, he cautions. “It’s more complex than goodies and baddies. Tinkering around might destroy long-evolved community relations.”
Peschel does not see any big risks, however. “Saureus is really the most important pathogen that colonizes human noses,” he says, so if lugdunin could get rid of it, it would be hard to imagine a negative outcome. Theoretically, instead of using the antibiotic, you could also allowSlugdunensis to colonize patients at risk from Saureus, he says—a probiotics treatment for the nose. The problem is that Slugdunensis is itself associated with a range of infections—including of the heart, joints, skin, and eyes—so that strategy could be dangerous. “There may be other bacteria where that is an option,” Peschel says.
Read is skeptical of claims that lugdunin may not trigger resistance, because every antibiotic developed so far has run into resistance problems. “Antibiotic use that does not drive resistance is the holy grail,” he says. “Fantastic if lugdunin turns out to be one such case. But history tells us not to hold our breath.”

terça-feira, 26 de julho de 2016

Esta é a história de Nossa Senhora de Caacupé, padroeira do Paraguai,

 Esta é história desta devoção mariana latino-americana:
No fim do século XVI um índio converso, escultor de profissão, subiu ao monte e se encontrou com selvagens Mbayaes dos quais conseguiu escapar, ocultando-se atrás de um grosso tronco. Nos angustiantes momentos que passou em seu esconderijo, pediu à Virgem sair com vida daquela situação. Livre daquele risco, esculpiu uma imagem com o mesmo tronco que oprotegeu, tal como prometeu à Virgem.
No ano de 1603 o lago Tapaicuá transbordou e alagou todo o vale do Pirayú arrasando tudo o que estava em seu caminho incluindo a imagem da Virgem. Entretanto ao retroceder as águas milagrosamente apareceu a imagem que o índio tinha esculpido. Os habitantes começaram a difundir sua devoção e começaram a invocá-la com o nome de "Virgem dos Milagres". Um devoto vizinho, chamado José e carpinteiro de ofício, construiu-lhe uma modesta capelinha e nela começou a receber culto a Virgem de Caacupé. A imagem da Virgem de Caacupé é pequena, de pouco mais de cinquenta centímetros. Seus pés descansam sobre uma pequena esfera, rodeada de uma bandagem branca de seda.
Cada 8 de dezembro se celebra a festa de Maria de Caacupé e os peregrinos chegam por milhares ao Santuário para demonstrar seu amor e gratidão à Mãe de todos, à "Virgem Azul do Paraguai".

Detalhes sobre autismo

Ressonância magnética para detectar autismo

Embora os primeiros sinais do espectro autista apareçam a partir do primeiro ano de vida, os processos cerebrais ligados à comunicação sofrem alterações que desencadeiam o transtorno muito antes disso. É o que sugere os resultados preliminares de uma pesquisa recente conduzida pelo pesquisador Jason Wolff, da Universidade Chapel Hill, Carolina do Norte, publicada pelo American Journal of Psychiatry.

Para chegarem a essa conclusão, os pesquisadores investigaram o desenvolvimento cerebral de 92 bebês, todos com um irmão mais velho autista, e acompanharam as mudanças na organização neurológica ao longo do tempo por meio de exames de ressonância magnética. Quando as crianças estavam com 2 anos, 28 haviam desenvolvido o autismo, enquanto 64 não. A incidência do transtorno entre irmãos sugere correlação genética, segundo os especialistas. 

Os pesquisadores observaram também que a substância branca (componente sólido do sistema nervoso central responsável pela transmissão de sinais entre regiões do cérebro) se formou lentamente em crianças que posteriormente desenvolveram a patologia, enquanto que nas saudáveis essa estrutura se constituiu rapidamente. Além disso, notaram alterações no desenvolvimento das fibras nervosas que conectam áreas cerebrais.

Esses indícios sugerem que o transtorno seja um fenômeno que atinge o cérebro inteiro, e não uma região específica como se acreditava anteriormente. Apesar de ser muito cedo para dizer o que causa essas diferenças, a descoberta indica uma interação complexa entre os genes e as experiências da criança com o mundo. “Futuros tratamentos poderão ser administrados em fases precoces da maturação cerebral para diminuir o impacto do autismo ou até mesmo para interromper seu desenvolvimento”, diz Wolff.

“As pessoas pensam que sou idiota.” “É realmente frustrante não conseguir falar.” “Eu me expresso através de comportamentos negativos que ninguém pode entender.” Essas são algumas frases de crianças com autismo, digitadas em aplicativos touch screen (telas sensíveis ao toque) e exibidas no curta-metragem documentário Eu quero dizer (I want to say, sem legendas em português). O filme mostra como esses programas, criados por desenvolvedores das empresas HP e Intel, se tornaram um canal de comunicação para pessoas com o transtorno. A ideia surgiu quando um executivo da HP levou um computador com tela touch à casa de um amigo, pai de um autista, para ver se o garoto se interessaria pelo equipamento. O menino começou a usar a interface intuitivamente e se comunicou com sua família. Em uma cena, uma mãe relata sua emoção ao ver a filha, que não fala, digitar que a amava. O vídeo, de 30 minutos, está disponível no canal Autism Speaks, no Youtube: I want to say.




O elo do silêncio


Quando comparamos a linguagem humana aos sistemas de comunicação de outros animais, nossa complexidade salta aos olhos. Combinando com grande liberdade um repertório de poucas dezenas de fonemas, somos capazes de produzir milhares de palavras para nomear tudo que nossa mente consegue perceber, fazer e pensar. Os defensores do excepcionalismo humano argumentam que nada parecido existe em nossos parentes mais próximos, os símios africanos. Apesar de limitado, nosso repertório fonêmico é grande o bastante para gerar uma explosão de possíveis combinações, o que só é possível por causa de um aparato fonador especializado. Ainda que bonobos, chimpanzés, gorilas e orangotangos vocalizem durante suas interações sociais, não apresentam um repertório de palavras capaz de representar a variedade de objetos do mundo. Eles contam, claro, com sinais vocais relacionados ao humor, além de muitos gestos e expressões faciais para comunicação de curta distância. No excêntrico teatro símio, o silêncio é de ouro.

Grande parte da elite acadêmica, das ciências biomédicas às humanas, sustenta que a linguagem é a principal linha divisória entre nós e todos os outros animais. Isso faz da expressão verbal humana um mistério evolutivo, sem elos filogenéticos com qualquer outro sistema de comunicação animal. Segundo uma teoria alternativa, defendida há décadas pelo biólogo Peter MacNeilage, a linguagem vocal humana evoluiu através da modificação de movimentos rítmicos faciais realizados por nossos ancestrais primatas. Infelizmente as estruturas necessárias para a produção da fala não se fossilizam, fazendo da abordagem comparativa uma necessidade. Entre os primatas do velho mundo, destaca se uma expressão facial de afiliação chamada abre-fecha labial. Caracterizado por movimentos verticais da mandíbula, esse comportamento quase inaudível é dirigido a outro indivíduo durante interações face a face, envolvendo troca de turnos como num diálogo.

Uma característica fundamental da fala humana é um ritmo em torno de 5 Hz (hertz) relacionado com a taxa de produção de sílabas. Se a fala evoluiu de movimentos faciais rítmicos, seria de esperar que o abre-fecha labial também apresentasse um ritmo próximo a 5 Hz. Para investigar a questão, pesquisadores das Universidades de Princeton e Viena filmaram em raios X os movimentos bucais de macacoscaranguejeiros enquanto realizavam abre-fecha labial ou mastigação.

Embora à primeira vista o abrefecha labial pareça envolver simplesmente a abertura e o fechamento dos lábios, a pesquisa mostrou que o comportamento requer movimentos rápidos e coordenados dos lábios, língua, mandíbula e do osso hioide. Os autores, entre os quais o médico, matemático e neurocientista brasileiro Daniel Takahashi, descobriram que esses movimentos ocorrem 5 vezes por segundo, quase o dobro da velocidade dos movimentos de mastigação. Além disso, análises matemáticas mostraram que os distintos componentes do aparato fonador se articulam durante o abre-fecha labial de modo muito semelhante ao da fala humana. Considerando que os macacos-caranguejeiros são primatas asiáticos que divergiram de nossa linhagem há quase 30 milhões de anos, os resultados sugerem que a fala humana evoluiu a partir de uma linguagem primata ancestral, baseada menos no som do que nas expressões faciais. Talvez a excepcionalidade do Homo sapiens não seja a linguagem e sim o barulho.

E o que há de concreto sobre câncer cerebral e celulares?

Você já deve ter ouvido alguém dizer algo como “essas engenhocas ultramodernas destroem nosso cérebro e arruínam o desenvolvimento das crianças”. A preocupação é compreensível, e não apenas porque todas as gerações anteriores tendem a desaprovar os comportamentos das seguintes. Sob vários aspectos os aparelhos digitais estão (pelo menos aparentemente) minando nossa juventude, da mesma forma como o rock “prejudicou” os jovens da década de 60, a televisão “comprometeu” a formação de nossos avós e os carros colocaram em risco nossos bisavós. Segundo essa lógica, estamos sendo arruinados há gerações. Mas o que a ciência diz sobre os efeitos nocivos da mais recente tecnologia?


Parte da resposta depende de sua definição de “arruinar”. É verdade que as coisas são diferentes agora. Muitas crianças moradoras das grandes cidades não “saem para brincar”, pelo menos não desacompanhadas. Mas também não precisam mais decorar nomes de presidentes e a tabela periódica, pois estão a apenas uma tecla de distância do Google. Estamos perdendo velhas destrezas, é verdade. Poucos sabem agora como usar um papel-carbono ou cuidar de cavalos; escrever à mão e dirigir podem ser as próximas habilidades a desaparecer.
Porém, diferente não é sinônimo de pior. E, por mais que psicólogos, educadores e pais se preocupem, ainda é surpreendentemente difícil encontrar estudos ligando aparelhos modernos à ruína da juventude. A pesquisa leva tempo e a era das telas sensíveis é muito recente. O iPad, por exemplo, surgiu em 2010.
Mas as pesquisas já começaram – e lançam alguma luz sobre como esses repentinamente onipresentes dispositivos podem afetar as crianças. Em 2009, um estudo na Universidade Stanford relacionou hábitos de adolescentes modernos de executar multitarefas no computador (que parecem ter se estendido a telefones e tablets) à perda da capacidade de concentração – um resultado um pouco preocupante.
Um estudo publicado na edição de fevereiro de Pediatrics revelou que crianças que têm aparelhos de tela pequena em seus quartos dormem em média 21 minutos a menos que as que não têm. Quanto à razão, os cientistas supõem que as crianças ficam acordadas até tarde para usar seus dispositivos ou, talvez, que a luz das telas produza atrasos no ritmo circadiano.
E quanto às habilidades sociais? No ano passado, em um estudo da Universidade da Califórnia em Los Angeles, foram acompanhados dois grupos de alunos do sexto ano (com idade média de 11 a 12 anos), O primeiro, formado por 51 jovens, passou cinco dias em um acampamento na natureza sem eletrônicos; o segundo grupo, de controle, com 54 participantes, não acampou. Depois disso, foram realizados testes e foi constatado que aqueles que haviam passado a temporada no campo se saíam significativamente melhor na leitura de emoções humanas em fotografias.
E o que há de concreto sobre câncer cerebral e celulares? Bem, em primeiro lugar, não é preciso um estudo para dizer que raramente os jovens estão com o telefone na orelha; eles mais digitam mensagens do que fazem ligações. De qualquer forma, os estudos não comprovaram nenhuma relação entre o uso de celular e câncer. Pelo menos não ainda.
É hora de começar a reclamar? Não necessariamente; nem todos os estudos chegaram a conclusões alarmantes. Em 2012 o grupo sem fins lucrativos de estudos sobre mídias e tecnologia Common Sense Media descobriu que mais da metade dos adolescentes dos Estados Unidos acreditam que as mídias sociais – agora acessíveis em qualquer lugar graças às telas sensíveis ao toque – ajudaram em suas amizades (apenas 4% acham que prejudicaram). Em 2014 pesquisadores do National Literacy Trust, do Reino Unido, descobriram que crianças pobres com aparelhos de tela sensível ao toque têm o dobro de probabilidade de ler todos os dias. Um estudo publicado na Computers in Human Behavior revelou que enviar mensagens é benéfico para o bem-estar emocional dos adolescentes – especialmente os introvertidos.
Precisamos claramente de estudos mais amplos e de mais longo prazo antes de começar uma nova rodada de reclamações. E eles estão a caminho; por exemplo, os resultados de uma grande pesquisa britânica com 2.500 crianças chamada Estudo de Cognição, Adolescentes e Telefones Móveis (Scamp, na sigla em inglês), do Reino Unido, com 2.500 crianças, sairão em 2017.
Enquanto isso, os sinais de alerta das pesquisas iniciais não são altos o suficiente para tirarmos aparelhos de nossas crianças e mudarmos para território amish. Por outro lado, o bom senso sugere que não é o caso de deixar a tecnologia ocupar todo o tempo dos jovens. Os achados até agora são suficientes para sugerir a prática de uma muito sábia e antiga precaução: a moderação. O excesso de qualquer coisa é ruim para as crianças, sejam eletrônicos modernos, televisão ou esporte.

Esta matéria foi publicada originalmente na edição de julho de Mente e Cérebro, disponível na Loja Segmento: http://bit.ly/29SXuYj 

O medo de ser uma farsa

Em algum momento da vida profissional, a maioria de nós já se sentiu uma farsa. E, em pequenas doses, essa sensação eventual pode ser até benéfica, nos fazendo rever valores e objetivos. O problema é que, para alguns, a impressão de ser uma fraude é persistente – independentemente do quanto saibam sobre suas áreas de atuação, se esforcem ou mesmo tenham acumulado conquistas e reconhecimento de seus pares e chefes. Essa condição, descrita pela primeira vez nos anos 70, é chamada de “fenômeno do impostor”. Apesar de anos de pesquisa, não se sabe quais os aspectos psicológicos específicos que levam a esse quadro e não há consenso sobre fatores externos com maior probabilidade de causar a síndrome.


Recentemente, pesquisadores da Universidade de Ghent, na Bélgica, publicaram um estudo que lança algumas luzes sobre o tema. Os cientistas solicitaram a 201 executivos de alto escalão que preenchessem oito questionários com mais de 130 questões. A pesquisa avaliou até que ponto esses funcionários sofriam do fenômeno do impostor e como eles se autoavaliavam em relação a algumas características como instabilidade emocional, responsabilidade, cuidado consigo mesmo e com os outros, amabilidade, sinceridade, extroversão, perfeccionismo, satisfação profissional e comprometimento com o trabalho.
O fenômeno do impostor estava presente em cerca de 20% dos voluntários em todos os níveis da organização. Pessoas que atribuíram a si mesmas altos escores em instabilidade emocional e baixos escores em cuidado eram as mais propensas a se sentir impostoras. Os psicólogos Jasmine Vergauwe, Bart Wille, Marjolein Feys, Filip de Fruyt e Frederik Anseel, autores do estudo, especulam que indivíduos que se sentem impostores apresentam maior tendência para autocrítica e perfeccionismo. Em outras palavras, podem exigir demais de si mesmos e ser mais comprometidos, exigentes e responsáveis do que se descrevem.
Outra descoberta interessante: profissionais que se sentem impostores mostram pontuações mais baixas em medidas do que os que os pesquisadores chamaram de “cidadania organizacional”, o que significa que são menos propensos a ajudar colegas, participar de reuniões opcionais ou desempenhar outras tarefas que não sejam essenciais para seu trabalho. Obviamente, sentir-se um impostor é angustiante – e também contraproducente. Os cientistas acreditam que o acompanhamento psicoterapêutico possa ser de grande utilidade para a redução do perfeccionismo, que muitas vezes aparece como forma de dar conta de sentimentos de insegurança e baixa autoestima. Com frequência, durante o processo terapêutico, as pessoas se dão conta de experiências vividas no passado que sustentam crenças nem sempre conscientes, de autodesvalorização, que desencadeiam sentimentos intensos de raiva, culpa, tornando-as mais propensas à depressão.

Leia mais:

Pessoas gentis levam vantagem
Nas sociedades que valorizam o coletivo, a cordialidade conta mais para a posição profissional do que as habilidades

Ter de escolher entre trabalho e família é fonte de estresse
Vida pessoal e profissional não estão separadas, e a dificuldade em conciliá-las prejudica a produtividade

Outgrowing Autism? A Closer Look at Children Who Read Early or Speak Late

The headlines read “New study suggests autism can be outgrown”, or “outgrowing autism: a doctor’s surprise and wonder.” The stories are based on studies reporting that 7-9% of children with a documented early autistic syndrome disorder (ASD) have no symptoms of the disorder on follow-up later in childhood or adolescence. That is good news. The question is how to account for it.
Is it possible to simply “outgrow” autism? Was the initial diagnosis wrong? Did some interventions work? Or might there be other explanations for this welcome news?
"In an earlier column titled “Oops. When “autism” isn’t autistic disorder,” I outlined three types of hyperlexia, or precocious reading ability, which is sometimes an element of a diagnosis of ASD. Type 1 are neurotypical children who simply read way ahead of their chronological age. Listening to a 4 year old reading books to his or her nursery school classmates is a startling experience.
Type 2 are children in which intense fascination with letters and numbers, along with early reading and remarkable memory represent ‘splinter skills’ as a part of autistic syndrome disorder (ASD)
Type 3 are children who likewise show intense fascination and preoccupation with numbers and letters very early, along with precocious reading skills and remarkable memory. They do have “autistic-like” symptoms or behaviors but those disappear over time as the child gets older. The outcome in these children is much more positive than those with ASD to their benefit and the great relief of their parents.
Following the “Oops” article I received numerous reports from parents who identified with hyperlexia 3. “You just described my child,” the puzzled, and relieved parents would write as they read the case examples in my Wisconsin Medical Journal article in December, 2011. I reviewed those reports and recently did an analysis of 165 of them with the following findings:
  • In all the cases there had been a confusing journey of various diagnoses, sometimes ASD/Aspergers or its variants, or else a wide range of others from hyperactivity to anxiety disorder to speech delay.
  • Age of onset of hyperlexia skills was 24.6 months
  • Age of first professional contact was 44 months
  • Certain features caught the parent’s attention in the hyperlexia 3 group as being different from ‘autism’ as usually described. For example their child demonstrated less withdrawal, more eye contact, the ability to seek and give affection and in general overall increased social proficiency.
  • Additionally while some “autistic-like” behaviors were present such as repetitive behaviors, insistence on sameness, occasional stimming, echolalia and increased sensory sensitivity, those symptoms disappeared as the child grew older
  • 11 cases that mentioned adult outcomes indicated 9 persons were attending college and having successful, independent lives. They continued to be exceptional readers which helped their collegiate performance and aided their careers. 2 cases were described as needing supervision because of continued autistic characteristics
  • Having an ASD diagnosis applied to their child at any point was a source of great distress for all parents.
It is impossible, of course, to make a diagnosis of the child based only on parent description. But from reading those reports, many of them very detailed, there was a clear impression that in some cases the hyperlexia was indeed a “splinter skill” manifestation of autism spectrum disorder (hyperlexia 2). But in many others, the increased social proficiency particularly, and disappearance of many “autistic-like” symptoms along with more positive outcomes suggested placement in a separate, hyperlexia 3 group.
In all of medicine the first step in treatment is to make the correct diagnosis. The only way to do that is with an in-person comprehensive evaluation by a multi-disciplinary team, including developmental specialists, neuropsychologists, and speech, language and occupational therapists, to name some. That will be the follow-up to this present study.
In the meantime, unfortunately, there continues to be a misconception in the literature and on the internet, that hyperlexia is always part of autism spectrum condition. That same misconception applies to children who speak late (“Einstein syndrome”), as vividly pointed out in Stephen Camarata’s book “Late-Talking Children: A Symptom or a Stage?” His experience with children who speak late mirrors my experience with children who read early.
While early diagnosis and intervention is to be applauded for children with developmental issues of all sorts, caution is warranted when applying an ASD diagnosis to children who read early or speak late, and at least a differential diagnosis by those familiar with hyperlexia or Einstein syndrome should be used until the natural history of the disorder reveals, finally, its true nature.
When a child exhibits hyperlexia 2 or 3, the same intervention tools are used to deal with the autistic, or autistic-like symptoms to the extent they are present. But the distinction between hyperlexia 2 and 3 becomes a critical one when it comes to vital educational decisions and placements. Hyperlexia 3 children do not do well in typical “special education” classes, and require instead different placements. Hence the cautious, informed diagnostic route.
Some will argue that the various interventions and treatments are responsible for that 6-7% of children who “outgrow” their autism. That may be true in some instances, but among my 165 cases are a number of children, now adult, with sufficient outcome and follow-up to conclude that those with what turned out to be hyperlexia 3 did not have ASD in the first place, the initial diagnosis notwithstanding. In these follow-up cases were a number of ‘success stories’ of very positive outcomes from grateful parents. But one was a first person account from a woman, now an adult, who recounted her journey with hyperlexia 3, asking now that she is rid of the symptoms of autism, how does she get rid of the medical history of “autism” that follows her.
My position is that “outgrowing” autism is most often the situation in which a diagnosis of ASD was prematurely and mistakenly applied, especially in children who read early or spoke late. Granted that early distinction can be a very difficult one since separating ‘’autistic-like” symptoms from ASD itself can be difficult in those early years. Hopefully as we study more children with hyperlexia or speaking late, we will become better at that.
In the meantime a cautious differential diagnostic approach, along with careful, watchful observation over time is advised especially when early reading or late speaking are the presenting symptoms.
Those children who are in the hyperlexia 3 group do not “outgrow” their autism. They did not have ASD in the first place. That is a meaningful distinction between the two groups. Fortunately hyperlexia 3 children do very well over the long term and that, of course, is very good news for them, their parents and the rest of us as well.
Meanwhile I will keep collecting reports from parents, which come to me almost daily, for further analysis and study because the success stories are very relevant and encouraging indeed.
References:
Camarata, S. (2015) Late-talking children: A symptom or a stage? MIT Press Cambridge, MA
Fine, D et al (2013) Optimal outcome in individuals with a history of autism Journal of Child Psychology and Psychiatry 54:195-205
Shulman, L Outgrowing autism: A doctor’s surprise and wonder The Doctors Blog, Albert Einstein College of Medicine May 5, 2015
Treffert, D (2011) Hyperlexia 3: Separating ‘autistic-like’ behaviors from Autistic Disorder; assessing children who read early or speak late WMJ 110:281-286

For Children with Autism, Multiple Languages May Be a Boon

Oscar, 6, sits at the family dinner table and endures the loneliest hour of his day. The room bustles with activity: Oscar’s sister passes plates and doles out broccoli florets. His father and uncle exchange playful banter. Oscar’s mother emerges from the kitchen carrying a platter of carved meat; a cousin pulls up an empty chair.

“Chi fan le!” shouts Oscar’s older sister, in Mandarin Chinese. Time for dinner!
“Hao,” her grandfather responds from the other room. Okay.
Family members tell stories and rehash the day, all in animated Chinese. But when they turn to Oscar, who has autism, they speak in English.
“Eat rice,” Oscar’s father says. “Sit nice.”
Except there is no rice on the table. In Chinese, ‘eat rice’ can refer to any meal, but its meaning is lost in translation.
Pediatricians, educators and speech therapists have long advised multilingual families to speak one language — the predominant one where they live — to children with autism or other developmental delays. The reasoning is simple: These children often struggle to learn language, so they’re better off focusing on a single one.
However, there are no data to support this notion. In fact, a handful of studies show that children with autism can learn two languages as well as they learn one, and might even thrive in multilingual environments.

LOST IN TRANSLATION:

It’s not just children with autism who miss out when parents speak only English at home — their families, too, may experience frustrating miscommunications. Important instructions, offhand remarks and words of affection are often lost in translation when families swap their heritage language for English, says Betty Yu, associate professor of special education and communicative disorders at San Francisco State University.
Yu, who is fluent in both English and Chinese, detailed Oscar’s experience in the Journal of Autism and Developmental Disorders earlier this year. (The details of dinner and other interactions from Oscar’s everyday life described in this article are from Yu’s case report.) The report hits home for researchers who study bilingual families of children with autism.
“One mother said to me, ‘Italian is the language of my heart and my home.’ She was obviously very sad that she couldn’t share that aspect of her identity with her daughter,” says Sue Fletcher-Watson, chancellor’s fellow in developmental psychology at the University of Edinburgh in the United Kingdom.
The advice to stick with a language that the family doesn’t speak well only intensifies the alienation experienced by these children, Fletcher-Watson and others say. “You’re taking a child who is already socially isolated and you’re making them even more isolated,” she says.

THE KIDS ARE ALL RIGHT:

The science — what little exists — in fact suggests that these children should embrace multilingualism.
“There are few studies on bilingualism in children with developmental disorders, and even fewer with appropriate control groups,” says Napoleon Katsos, lecturer in linguistics at the University of Cambridge in the United Kingdom.
In typical children, learning a second or third language hones critical thinking and executive function — a set of skills that includes attention, self-control and mental flexibility. It also gives them an edge in reading and writing.
Children with developmental delays might reap those same benefits. Bilingual children with autism have language skills on par with monolingual childrenwith the condition, and they acquire social and cognitive skills at the same rate. But these children are twice as likely as monolingual children with autism to use gestures such as pointing when they communicate, according to a 2012 study. This finding suggests that they have a strong command of joint attention and are adept at nonverbal communication.
The standard tools for evaluating a child’s social and communication skills are in English, and may underestimate the skills of bilingual children with autism, says Kruti Acharya, assistant professor of disability and human development at the University of Illinois at Chicago.
At the 2016 International Meeting for Autism Research in Baltimore, Acharya’s team presented preliminary results showing that a picture book a child narrates in his native language can more accurately assess his communication skills.
This approach could be particularly useful for autism clinicians in Europe, where dozens of languages are spoken, says Fletcher-Watson.
“There are some good reasons to be optimistic about the potential benefits of bilingualism,” Fletcher-Watson says. “There’s a big overlap between the areas that we think are helped by bilingual exposure and the areas where children with autism struggle.”

THINGS LEFT UNSAID:

Oscar, now 7, was born in California a few years after his family emigrated from China. At the time, the other members of his household, like more than 24 million other children and adults in the United States, spoke little English at home.
But when Oscar was diagnosed with autism at age 2, pediatricians, speech therapists, neighbors and friends all advised his family to pick a single language to communicate with him. And that language, they all agreed, should be English.
English is the ticket to success in school, Oscar’s teachers said. A prerequisite to participating in state-funded therapies, his therapists said. The predominant language of Oscar’s suburban neighborhood and of the children who play there, his neighbors said.
By the time Oscar turned 3, his family had committed to interacting with him only in English. Yet they sometimes seemed to be at a loss when trying to communicate with him. “There were things that the family didn’t know how to say very smoothly or at all in English, so they had to talk around the issue or just drop it,” Yu says.
The better scenario would have been to speak to Oscar in Chinese and let him learn English from the outside world, says Johanne Paradis, professor of linguistics at the University of Alberta in Canada. Retaining strong cultural and family ties will only help parents connect with their children later on, she says.
“It’s easy to say when a child is diagnosed with autism at age 3 that the family should switch to English at home,” Paradis says. “But when that child is 12, they’re going to have more complex ideas to express and the parent won’t be able to talk with them freely.”
After dinner, Oscar and his grandfather are seated a couple of feet apart on the living room floor, playing with a train set. But they might as well be separated by 2 miles, for all that they can say to each other.
It’s 8 o’clock — time to decide which family member will sleep in Oscar’s room and make sure he is safe.
The grandfather leans in and shakes Oscar’s hands, waiting for the boy to look up. “Oscar, with who sleep?” he asks.
Oscar pauses; glances down at the trains. “Oscar sleep,” the boy echoes, as he does when he struggles to understand.
The grandfather tries again. “You want with who sleep?”
“With Daddy,” Oscar says, finally.

    Drinking Water Cleanup

    Key concepts
    Physics
    Chemistry
    Water treatment
    Drinking water
    Introduction
    Do you know where your drinking water comes from? Sure, it comes out of your faucet. But how does it get there? Drinking water all over the world originates from either surface waters—such as lakes, reservoirs and rivers—or from underground sources, such as groundwater. But would you want to drink water straight from a river or lake? Probably not; they can be really dirty! To become clean and safe, this water first has to undergo several treatment processes; the first ones are called coagulation and flocculation. These processes help get rid of particles in the water and transform murky, dirty water into crystal clear water: See for yourself in this activity!
    Background
    Surface waters often contain soil particles, or flocs—organic matter and dirt that make the water look murky and cloudy. The solids floating in the water are called total suspended solids (TSS). They are usually so small and light that it takes a long time until they settle to the bottom of the water body. This is a problem because potentially dangerous bacteria can stick to these tiny particles, which makes the water unsafe to drink.
    Before becoming safe and clean drinking water, surface waters have to undergo several treatment steps. This cleanup happens in a drinking water treatment plant where one of the first steps is getting rid of the suspended solids with a combined process using coagulation and flocculation. In this step chemicals called coagulants and flocculants are added to the water; they help clump all the small particles into bigger ones so they settle more readily to the bottom of the water supply due to their increased size and weight. Most suspended solids in water have a negative surface charge and thus repel one another, which prevents them from sticking together and keeps them in suspension. If a chemical with an opposite (positive) charge is added to the water, however, the particles become neutralized and are able to cling together to form larger particles or so-called “microflocs”. These settle down much faster and the water becomes much clearer. How clean do you think your water will get after adding alum, which is commonly used as a coagulant? Get ready to find out in this science activity!
    Materials
    • Dry, fine soil from your garden or another source
    • Fine-meshed sieve or colander
    • Mortar and pestle
    • Large mixing bowl
    • Tap water
    • Measuring spoons
    • Two teaspoons
    • At least four transparent cups, glass or plastic
    • Timer
    • Alum, available at the spice section of most grocery stores
    • Microwave
    • Paper and pen or pencil (optional)
    • Lemon juice (optional)
    • Kitchen towel to catch spills (optional)
    Preparation
    • Gather some dry soil from your garden or another source.
    • Use the fine-meshed sieve to filter out large materials, such as stones or sticks and leaves.
    • Transfer the sieved soil into a mortar and grind it really well until you have a very fine, homogeneous soil powder.
    • Take one teaspoon of the finely ground soil and put it in a bowl.
    • Mix the soil with about one liter of tap water to make a murky soil solution. The soil particles should not settle easily and the solution should stay turbid after mixing.
    • Prepare your coagulant–flocculant solution by adding one quarter teaspoon of alum powder to about three teaspoons of tap water. (You might have to heat the solution in the microwave to get the powder dissolved.) Stir the solution until all the alum powder is dissolved.
    • Perform the activity on a surface that can get a little wet and dirty; you might want to have a kitchen towel ready nearby in case of spills.
    Procedure
    • Fill two cups half full with the prepared soil solution. (Make sure to stir the prepared soil solution in the bowl before transferring it into the cups.)
    • One of the cups will serve as your control and the other for the alum treatment. (You can label them accordingly with “Control” and “Alum Treatment”.)
    • Set your timer for two minutes, and start it.
    • With a spoon in each cup, stir both soil solutions as fast as you can (without spilling) for two minutes. You can carefully stir both cups using one hand for each or ask a helper to stir one of the cups. How does the soil solution look after you have finished stirring? Is it very turbid?
    • Stop stirring and set your timer for five minutes.
    • Start the timer and observe both soil solutions for five minutes. What happens to the soil solution within five minutes after stirring? Does it stay the same the whole time? Do you see soil particles settle to the bottom?
    • After five minutes compare both cups. Do they look different? Is one of them more turbid then the other? If no, why do you think this is the case? If yes, what could be the reason for that?
    • Now, get your prepared alum solution and add about one quarter teaspoon to the cup you labeled Alum Treatment. Do not add anything to the Control cup.
    • Set your timer for two minutes and start it.
    • Again, take two spoons and stir both cups as fast as you can (without spilling) for two minutes.
    • Stop stirring and set your timer for five minutes.
    • Start your timer and observe both cups again for five minutes. What do you see this time? Does the water stay turbid in both cups or do you notice a difference in the soil solution that you treated with alum?
    • Observe both cups a little longer (up to 15 minutes) to follow the flocculation process. Do you see the water getting clearer in one of the cups? How long does it take to become fully clear?
    • Get two new cups and label them Control and Alum Treatment again.
    • Fill them both with the same soil solution you prepared in the beginning. (Make sure to stir the soil solution in the bowl before you transfer it into the two cups.)
    • Add one quarter teaspoon of alum solution to the cup you labeled Alum Treatment.
    • This time do not stir the solutions and just observe what happens for seven minutes. Do you see the same thing happening in the Alum Treatment cup as before when you were stirring? Does the soil solution in both cups look the same after seven minutes? Why do you think this is the case?
    • After you have waited for seven minutes, start stirring both solutions as fast as you can (without spilling) for two minutes and then observe the cup for five more minutes. What happens after you stir the solutions? How do you think stirring the solutions makes a difference? Is your water getting clearer now?
    • Extra: Explore how water properties can affect the flocculation process. Prepare two cups with turbid soil solution and add two teaspoons full of lemon juice to each of the cups. This changes the pH of the soil solution. Now add one quarter teaspoon of your alum solution to one of the cups and stir both of them for two minutes. Observe what happens after stirring. Do you see floc formation in the cup with alum treatment? How does the lemon juice change the flocculation process?
    • Extra: How does the amount of alum change the floc formation in the soil solution? Make an alum solution by adding 7.5 grams of alum to one liter of tap water. Then prepare three or four cups with turbid soil solution. Add different amounts of the alum solution to each of the cups (for example zero, one, three and five milliliters) and stir all of them for two minutes (with help, of course). Observe the cups after stirring. Do you see a difference in the three or four cups after stirring? Do all of the water solutions change from turbid to clear?
    Observations and results
    In this science activity you simulated the first steps at a full-scale water treatment process in a cup. Were you able to clean up your water from its visible suspended particles? If you do not treat the water with coagulants and just stir it, no water cleanup occurs. The water stays turbid, as you should have noticed. But when you stirred the solutions and added alum powder as a coagulant, you should have observed that with alum treatment, the particles settled down and the water became much clearer than the control. The reason for this is that the alum powder—which is an aluminum salt or, more specifically, KAl(SO4)2—contains positively charged aluminum ions that are able to neutralize the negatively charged particles in the water. This way the particles can clump together and microflocs form that settle down to the bottom of the cup, leaving behind clear water.
    If you do not stir the water after you added the alum powder, the lack of mixing does not allow the positive aluminum ions to come in contact with the soil particles. Thus, the particles cannot be neutralized and will not be able to settle down. Therefore, stirring is a crucial step in the coagulation and flocculation process. If you added lemon juice to the solution, changing its pH, the alum becomes less effective in neutralizing the soil particles. The solution should have stayed more turbid than without lemon juice. Adding different amounts of alum to the turbid water results in different cleanup results. In the beginning adding more alum results in a better water cleanup. Adding too much alum, however, can lead to a less efficient cleanup. In addition, coagulants and flocculants are expensive, which is why you want to avoid adding more than are necessary to the water; drinking water treatment plants use “jar tests” to identify the optimal coagulant and flocculant concentrations.
    Cleanup
    Do not drink any of your water samples—even if they appear clear. In a real water treatment plant, additional steps are taken to ensure the water is safe to drink and not contaminated with dangerous things that we cannot see. Pour all your solutions down the drain.
    More to explore
    Drinking Water: Water Treatment, from the U.S. Centers for Disease Control and Prevention
    Coagulation–Flocculation, from Sustainable Sanitation and Water Management (SSWM)
    Flocculation: Making Clean Water, from Khan Academy
    Where Does Your Water Come From?, from The Nature Conservancy
    Science Activity for All Ages!, from Science Buddies
    This activity brought to you in partnership with Science Buddies